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An expression for the non-adiabatic transition probability is derived from the viewpoint
of the non-stationary character of the adiabatic approximation. A numerical calculation has
been made for the free NO molecule. The non-adiabatic transition probability for the transi-
tion (B%r v = 0) — (et v = 9) is estimated to be 1079 sec by using the wave functions pro-
posed by Moszr et al.

Tiir die nicht adiabatische Ubergangswahrscheinlichkeit wurde aus dem nicht-stationéren
Charakter der adiabatischen Néherung ein Ausdruck hergeleitet, der fiir den Fall des NO-
Molekiils numerisch ausgewertet wurde. Dabei ergab sich unter Verwendung der Wellenfunk-
tionen von MosEr u. Mitarb. eine Wahrscheinlichkeit fiir den Ubergang (B2wv = 0) —
(a*z v = 9) von der Grofenordnung von 10~¢ sec™.

Une expression pour la probabilité de la transition non adiabatique est obtenue du point
de vue du caractére non stationnaire de I’approximation adiabatique. Un caleul numérique a
été effectué pour la molécule NO isolée. La probabilité de transition non adiabatique pour la
transition (B2%7 v = 0) — (a%m v = 9) est évalube & 1078 sec en utilisant les fonetions d’onde
proposées par Moskr et al.

1. Introduction

Recently, many investigations on the approximation of the Born-Oppen-
heimer separation have been carried out [1, 2, 3]. Fisk and KirTman [4], and
JEPSEN and HIRSCHFELDER [§] respectively evaluated the energy corrections to
the Born-Oppenheimer approximation for the H, and Hf molecules. Carv [6]
discussed the rotation-electronic interactions of diatomic molecules from the
nonadiabatic viewpoint of the Born-Oppenheimer approximation. Wu and
BraT1A [7], and DavgarNo and McCARROLL [§] respectively studied the interac-
tions of hydrogen and helium atoms in the ground and excited states, and found
that the diagonal terms of the coupling between electronic and nuclear motion
are not negligible at large separations. In the present investigation, we shall
discuss the non-stationary character of the adiabatic approximation [9]. It will be
shown that there is always a definite transition probability for the system to
oscillate from one electronic state to another accompanied by a change in the
quantum states of nuclear motion to make energy conserved. In the next section
we shall estimate the non-adiabatic transition probability for the transition
B2z — g% of the free NO molecule.

Consider a system of N electrons with coordinates 7;, i=1, 2. . N, and L nuclei
with coordinates 7,, =1, 2..L. The quantum mechanical motion of the system
is then given by the Schrédinger equation
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where the electron mass is denoted by m, and the nuclear masses by M,. It is
possible to expand the wave function of the system of electrons and nuclei in the
following form:

O 3 cunlt) £nolB) palr, F) exp (— @)

where Wy, and yue are the solution of the Schrédinger-type equation for the
nuclear motion
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with B®)(R) defined by

BiA(R) =% <ya | B2 | wa) - (5)
Substituting Eq. (2) in Eq. (1), multiplying both sides of the resulting equation by
wu(r, B) xno(R), and integrating over the electronic and the nuclear coordinates,
we obtain the following set of coupled equations for the coefficients cn(f):

[i(Wm, — War)t

i Cuolt Z nw | Onn(R) | o> exp 3 ]cn’v’(t) (6)

where Cpp/(R) is
Cun(R) = 1M < A B BE), and AL = (pa | Bulywd. (D)

The coordinate system usually used for the electrons in the integrals A(;L",{,, and
B¥, is fixed to the nuclear skeleton, hence some of the nuclear coordinates will
not appear as parameters in the electronic wave function. It is usually easier to
transform the derivatives to a coordinate system moving with the nuclei than to
carry out the differentiation on the complicated function obtained when the elec-
tronic wave function is expressed in fixed coordinates. The non-diagonal matrix

elements Z;‘j‘,{,, and BY), were calculated by JepsEN and Hrirscurerper [6] for
H7 between the two electronic states 1so and 2se. If Opy’ # 0, there is a definite
transition probability for the system to make non-adiabatic transitions from one
electronic state to another. This non-adiabatic transition from one electronic state
to another is accompanied by transitions in the quantum states of the nuclear
motion.

The experimental evidence shows that the influence of the coupling terms
Cun/(R) is very small. Thus, we may use time-dependent perturbation theory to
determine the transition probability which is

Pn'v' —»nv) = -2}? | <xno | Con(B) | garor> 2 @(Wao) (8)

where o(W ,0) represent the density of states. We shall apply Eq. (8) to calculate
the non-adiabatic transition probability for the transition B*zx — a%z of the NO
molecule.

2. Appliecation to Nitrie Oxide

Instead of directly performing the derivation of P(n'v’ — nv) in the fixed co-
ordinate system as already outlined, it is possible to separate off the motion of the
center of mass from the Schrodinger equation before performing the derivation.
JepsEN and HirscHFELDER [I0] pointed out that the two approaches give quite
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different Born-Oppenheimer separations, with somewhat different accuracy and
somewhat different coupling terms between the electronic and nuclear motions. In
the following treatment of diatomic molecules, we shall ignore the distinetion
between the center of gravity of the nuclei, and the center of gravity of the molecule
and use the rotating coordinate system associated with the nuclei for the motion
of the electrons. In this case, the coupling matrix elements Cy,/(R) takes the

following form:
1 cot 6
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where {; represents the coordinate whose axis is directed along the line joining the
nuclei, and (1125, JIZT,,, ﬂc) denote the operators of the components of the total
angular momentum of the electrons. Next we want to calculate the coupling
matrix element between the two electronic states B*z and a*n of the NO molecule.
The qualitative molecular orbital description of nitric oxide was originally given
by MuLLikEN [11]. Recently, a complete self-consistent LCAQ treatment of NO
has been carried out by MosEr et al. [72]. We shall use their wave functions to
estimate Cgt,, pen(R). For convenience, their molecule orbitals and wave functions
for nitric oxide are tabulated in Tab. 1 and 2 respectively.

Table 1. Molecular Orbitals of Nitric Oxide

$10 = (15)y $10 = (13)s

$ss = 0.3700 (25)a + 0.6561 (2s), + 0.1927 (200 + 0.1994 (2pa),
pas = 0.8084 (2)s — 0.7766 (2s), + 0.0461 (2p0)a + 0.2679 {2po),
dss = 0.4847 (25) + 0.2505 (2s)g — 0.6387 (2po)n — 0.5392 (2p0),
dos = 0.7036 (25)n — 0.7300 (2s), + 1.0618 (2pc)n — 1.0313 (2pc),
b1z = 0.5050 (2px)n + 0.7649 (2px),

2 = 0.8887 (2pn)n — 0.6780 (2pm)y

If the rotation-electrounic interactions are neglected, then the rotational angular
momentum is conserved in the system. With this and the orthogonality of the
electronic wave functions, we can see from Eq (9) that the main contribution to

the calculation of Cpy(R) comes from {yp, ‘ 5 R ‘1/%/) and {yy ( (M2+ M‘“’)lqpﬂ S

Furthermore, since B2z ~ a*n is spin-forbidden, to calculate Cya,, g2, (R), we have
to calculate the matrix elements of spin-orbit coupling, vibronic coupling and

1*
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Table 2. Wave Functions of Nitric Oxides

P 1d) = | (Lrh)lla) o) ()2t |

pan1d) = | (Uah)(ln)4(dat)(@mH)(2mt)_ |

patn1l) = V—i (| () (lam) 4 (Aerm) (@)@t | + | (L) (L) s Ao+ (2o (2H)_ | +
| (A7) (L) 4 () (2+) 1 (270) |)

y(Bi13) = | () (1) (L) (@) (2 ). |

1
Pl B 13) = S (| (1) () (109) @)y ()| = | () 1)) (2e4)2e0%)- )
DB 1Y) = | ()17} (1) (@) 2| 2 | (154) 1) ()2 ) 2) | +

~
=)

+ | (et (Am ) () (@) (2m) )
» For simplicity, the configuration (10)? (20)2 (306)2 (40)2 (56)2 has been omitted.

spin-vibronic coupling. These matrix elements calculated by the conventional
procedures [13, 14, 15, 16] using the wave functions of Tab. 2 are, at equilibrium
positions.

Cpa( B 13) -%1 wlake 13)> = — 8.76 x 10-3 (%)
Wletn A1) | 57| w(B 11 = — 1.54 (1)
(a2 13) | Hy | platm 13)) = 1.32 x 10—4( ) (10)

{po( B 13) | Hyg | plate 1%)> = 0.591 x 10— 3 )
(1]
In Eq. (14), Hy, represents the spin-orbit coupling:
’ 1 > [ ’
H80: 2m? c? ;—g’i'(viv X %’l«) + m262 ‘Z zz

. (7')»1 X ﬁi

1.’1

@

(11)

where 3; are electron spin operators. The detailed calculation of the matrix
elements in Eq. (10) is discusses elsewhere [17].

In order to evaluate the integrals involving the vibrational wave functions be-
tween two electronic states, we assume that the potential curves of the two
electronic states are in the form of the Morse potential [18]

Un(R) = Dy[l — e~saB-Ba) 2 , (12)

Then the vibrational wave functions y%™ = 1/R ¢,, take the following form
[18, 19]:

on(Kn — 20 — 1)

Ky —20 -1
¢":[ 21 D(Kn — v)

1 _
}/a e—Znj2 Zn 5 2 (_1)k+‘0 FF(Kn v)

v—k
ﬁzn (13)

where I'(x) is the gamma function, Z, == Kpe—onB=Ben) = j e~k and K, and D,
are related to the constants in the expression for the vibrational energy

WD) = ayp(v + 3) — (waZa) (v + 3)2, (14)

n u? h
o> Dn= o (@nn) = o (15)

n= dcp
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Thus, for example, the overlap integral of the vibrational wave functions between
two electronic states is given by
K, -1 Ko -1

1 1 ,
(v1b) ,x;g:)b)> = <,§ nv lf Snroy = (— 1) NppoNyrpdn 2 At 2

2z ’ 1 F(Kn - ’U) F(Kn’ — Ul) ,
g 2, (~DHFE) ) FE TE e IE, —v = ) (6)
where
. Oén(Kf; -~ 2y — 1) 1/2
Hno= l o T(Kx = v) U7
and

o
J(k, ') = j AR — F(Ane—B + Apre—2'B)] x

xexp [~ (% Kp—k - %) xplt — (% Ky~ ¥ — %) awR]  (18)

since &y 5 &n, the integral J(k, k') in general cannot be evaluated exactly, and
if it is desired to obtain a general analytical formula for an overlap integral, it is
necessary to resort to a valid approximation. The approximation method proposed
by FrasEr and JarmaIN [20] is to replace U,(R) and U,/(R) by the two new
potentials U,(R) and U,(R). The new potentials have their x-values equal to
some mean value of the original «y, and «,-. It is easiest to take the arithmetic
mean & == (&g + oy’)/2 though it is sometimes convenient to choose another « that
will make final computations easier and yet not affect the result. Compensating
adjustments are made in the constants of the two states that depend on the x-value
for the state. Thus, normalization and closure properties are maintained. The
molecular constants adjusted to correspond to the new «, and indicated by primes,
are

K;,:Kn(

on \2 Y onr\2 ’ ’

> ’ Kn’:Kn’( ) s Ap= K, eBen, l = 'e"‘Ren . (19)
09 [+
With these adjustments, the integral J(k, ') can be carried out easily and is

given by

Hew)=5 (7)™ nE -1 - k- w (20)

where K = 3(K,’+ K,’) and A= §(4, + 4,/). Other vibrational integrals like
Obarr
AR ¢y | BF $nod, (1R fauo | R —=~ ¢

using the molecular constants [21] w = 1038 em—1, wxr = 7.601 cm—1, R,= 1.385
A for the B2x state [22], and w = 1019 em—1, wz = 12.8 em~1, B, — 1.4 A for the
a’n state. We obtain, for example,

G an) | 1§D (atn)y = — 0.674 x 10-° (21)

<H¢0 Bim)| = aaR Hlatn)> = — 1.33 x 10-%/a, .

> etec., can be evaluated similarly. By

These values agree to the order of magnitude with those obtained by the harmonic
oscillator approximation [24]. It shounld be noticed that the vibrational integrals
of diatomic molecules between two electronic states depend very greatly on the
modifications in equilibrium distances and vibrational frequencies of the two
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electronic states. The larger the modifications in equilibrium distances and
vibrational frequencies of the two electronic states, the larger will be the vibra-
tional integrals.

To calculate the non-adiabatic transition probability for the transition
B2 — a*m, we further assume that the intervals of the rotational energy are so
small in comparison with those of the vibrational energy that the rotational energy
may be approximately regarded as forming a continum spectrum, and also that
the electronic-rotation couplings are negligible. In this case, we have o(Wyy) =
2u Re?

72
transitions originate from a Boltzmann distribution of rotational levels at rather
high temperatures so that the summation over rotational states can be replaced
by an integration.

Substituting the matrix elements of spin-orbit coupling, vibronic coupling,
spin-vibronic coupling, and the vibrational integrals listed respectively in Eqgs. (10)
and (21), into Eq. (8), and using the Franck-Condon approximation, we obtain the
non-adiabatic transition probability for the transition from the state B%r(v’ = 0)
to the state a*n(v = 9) as

P(Biw’ = 0 — abw = 9) = 2 | (Y™(an) | Case, men | 257 B)> | Tp(Wetn)

[24]. Actually this is also equivalent to assume that the non-.adiabatic

2 w2 0 . 0 X
= 2| 2 [2 ot )| | it 1> e | e -
— o 1) | 83430 | platn 1) ulatn) |5 | 1ol BnD> |2 07
=1 x 10-%gsec1. (22)

This is indeed a small value. However, this value cannot be taken too seriously in
view of the crudity of the wave functions used, and the uncertainty of the equi-
librium distance of the anr state. These dependences may easily change the order
of magnitude estimated above. Eq. (22) gives us the spontaneous rate for an
isolated NO molecule to make radiationless transition from the initial state
(B2, v' = 0) to the state (a%z, v=9).

Although the non-adiabatic transition Bz - X%z is spin-allowed, because of
the large electronic energy gap involved in the transition, it will not be more
favorable than the non-adiabatic transition B%*z — a%z we have discussed. The
calculation of the non-adiabatic transition probability P(B%*r — X%z) will not be
attempted here. Because, in this case, even the Fraser and Jarmain’s method for
estimating the vibrational integrals between two electronic states becomes imprac-
tical due to the strong cancellation property of the Laguerre polynomials. Finally,
it should be pointed out that the non-adiabatic transition probability calculated
here is for a free molecule, and it can be greatly enhanced [3, 7], when the mole-
cule is embeded in a crystalline solvent of another species.

Acknowledgement. The author is indebted to Professor R. Bersoux of Columbia University
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